Effects of Dispersal for a Logistic Growth Population in Random Environments

نویسندگان

  • Xiaoling Zou
  • Dejun Fan
چکیده

and Applied Analysis 3 = [− 0.5k 1 x 1.5 1 + 0.5k 1 x 1 + 0.5 (r 1 − ε 12 − 0.25σ 2 1 ) x 0.5 1 − 0.5 (r 1 − ε 12 − 0.5σ 2 1 )] dt + [− 0.5k 2 x 1.5 2 + 0.5k 2 x 2 + 0.5 (r 2 − ε 21 − 0.25σ 2 2 ) x 0.5 2 − 0.5 (r 2 − ε 21 − 0.5σ 2 2 )] dt + [0.5 (x −0.5 1 − x −1 1 ) ε 12 x 2 + 0.5 (x −0.5 2 − x −1 2 ) ε 21 x 1 ] dt + 0.5 (x 0.5 1 − 1) σ 1 dB 1 (t) + 0.5 (x 0.5 2 − 1) σ 2 dB 2 (t) . (11) There exists a constant N such that f(x) = x − x < N on t > 0; so we can obtain dV ≤ [− 0.5k 1 x 1.5 1 + 0.5 (k 1 + Nε 12 ) x 1 + 0.5 (r 1 − ε 12 − 0.25σ 2 1 ) x 0.5 1 − 0.5 (r 1 − ε 12 − 0.5σ 2 1 ) ] dt + [− 0.5k 2 x 1.5 2 + 0.5 (k 2 + Nε 21 ) x 2 + 0.5 (r 2 − ε 21 − 0.25σ 2 2 ) x 0.5 2 − 0.5 (r 2 − ε 21 − 0.5σ 2 2 ) ] dt + 0.5 (x 0.5 1 − 1) σ 1 dB 1 (t) + 0.5 (x 0.5 2 − 1) σ 2 dB 2 (t) ≤ Mdt + 0.5 (x0.5 1 − 1) σ 1 dB 1 (t) + 0.5 (x 0.5 2 − 1) σ 2 dB 2 (t) (12) as long as (x 1 , x 2 ) ∈ R 2 + . Integrating both sides from 0 to τ k ∧ T and then taking expectations yield EV (x 1 (τ k ∧ T) , x 2 (τ k ∧ T)) ≤ V (x 1 (0) , x 2 (0)) + ME (τ k ∧ T) ≤ V (x 1 (0) , x 2 (0)) + MT. (13) Denote Ω k = {τ k ≤ T} for k ≥ k 1 , by (8), P(Ω k ) ≥ ε. Note that, for every ω ∈ Ω k , there is some i such that x i (τ k , ω) equals either k or 1/k, and V(x 1 (τ k , ω), x 2 (τ k , ω)) is no less than either√k − 1 − 0.5 ln(k) or 1/√k − 1 − 0.5 ln(1/k). Consequently, V (x 1 (τ k , ω) , x 2 (τ k , ω)) ≥ [√k − 1 − 0.5 ln (k)] ∧ [ 1 √k − 1 − 0.5 ln(1 k )] . (14) It is follows from (13) that V (x 1 (0) , x 2 (0)) + MT ≥ E [I Ωk V (x 1 (τ k , ω) , x 2 (τ k , ω))] ≥ ε ([√k − 1 − 0.5 ln (k)] ∧ [ 1 √k − 1 − 0.5 ln(1 k )]) . (15) Letting k → ∞ leads to the contradiction ∞ > V(x 1 (0) , x 2 (0)) + MT = ∞. (16) So we must have τ ∞ = ∞ a.s. Theorem 1 shows that the solution of system (4) will remain in the positive cone R + . This nice positive invariant property provides us with a great opportunity to construct different types of the Lyapunov functions to discuss the stationary distribution for system (4) in R + in more detail. 4. Stationary Distribution for System (4) In order to prove our main results, we require some results in [25], and the technique we used here is motivated by [26–28]. System (4) can be rewritten as d(x1 (t) x 2 (t) ) = ( x 1 (r 1 − k 1 x 1 ) + ε 12 (x 2 − x 1 ) x 2 (r 2 − k 2 x 2 ) + ε 21 (x 1 − x 2 ) ) dt

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of semi-analytic method to compute the moments for solution of logistic model

The population growth, is increase in the number of individuals in population and it depends on some random environment effects. There are several different mathematical models for population growth. These models are suitable tool to predict future population growth. One of these models is logistic model. In this paper, by using Feynman-Kac formula, the Adomian decomposition method is applied to ...

متن کامل

Spatially heterogeneous populations with mixed negative and positive local density dependence.

Identifying the steady states of a population is a key issue in theoretical ecology, that includes the study of spatially heterogeneous populations. There are several examples of real ecosystems in patchy environments where the habitats are heterogeneous in their local density dependence. We investigate a multi-patch model of a single species with spatial dispersal, where the growth of the loca...

متن کامل

Random Dispersal vs Non-Local Dispersal

Random dispersal is essentially a local behavior which describes the movement of organisms between adjacent spatial locations. However, the movements and interactions of some organisms can occur between non-adjacent spatial locations. To address the question about which dispersal strategy can convey some competitive advantage, we consider a mathematical model consisting of one reaction-diffusio...

متن کامل

Stochastic population growth in spatially heterogeneous environments.

Classical ecological theory predicts that environmental stochasticity increases extinction risk by reducing the average per-capita growth rate of populations. For sedentary populations in a spatially homogeneous yet temporally variable environment, a simple model of population growth is a stochastic differential equation dZ(t) = μZ(t)dt + σZ(t)dW(t), t ≥ 0, where the conditional law of Z(t+Δt)-...

متن کامل

When group dispersal and Allee effect shape metapopulation dynamics

The dispersal ability of a species will be critical for how population dynamics are realized in spatially structured systems. To date, the effect of group dispersal on metapopulation dynamics is poorly understood. Here, we investigate how group dispersal and Allee effects shape metapopulation dynamics identifying conditions in which group dispersal can be an advantage over independent dispersal...

متن کامل

Plant fecundity and seed dispersal in spatially heterogeneous environments: models, mechanisms and estimation

1. Plant fecundity and seed dispersal often depend on environmental variables that vary in space. Hence, plant ecologists need to quantify spatial environmental effects on fecundity and dispersal. 2. We present an approach to estimate and model two types of spatial environmental effects: source effects cause fecundity and dispersal to vary as a function of a source's local environment, whereas ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014